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INTRODUCTION

UNAKNOUNCED

The purpose of this paper is to present an approximate thecry of compressible air inflow

between reed valves for pulce jet engines. The exact theory of the air intake process for

such engines was developed and presented in two papers published under the sponsorship of Proj-

ect Squid (Heferences | and 2). lhis exact analysis, however, involves laborious cor-utations
and can not, at present, be used for the first assessment of a new design, since, for such a

purpose, the number of numerical examples treated would have to be greatly enlarged. The pres-
ent shorter, even if less exact, analysis is well suited for use in the first stage of a new
design. It might well be that the results obtained by the present method are sufficiently
sccurate so that they can be used for design purposes without reverting to the exact analysis.

In the approximate theory the inertia effects of the fluid are neglected., This neglect

introduces an error in the analysis. However, the magnitude of this error may be ascertained

by comparing the results obtained by the approximete theory with those obtained by the exact

theary.

In the present snalysis the shapes of the reeds during mcvement are determined. This is
done by prescribing the forcing function in the differential equation of the forced reed motion
and integrating this =quation. The inflow, at specific times, is treated as nozzle flow.
Velocity, pressure, and density distributions in the tluid are obtained from the nozzle analy-
sis, The method, without alteration, is applicable to the closing period of the valves as

well, but the forcing function for this period must be prescribed in agreement with the pres -

sure-time function during combustion. In the present paper, however, for brevity only the

opening period of the reeds is treated.

A compariscon of Lhe results obtained with those of Lhe exact theory shows good qualita-
tive agreement and also good quantitative agreement in the early part of reed motion. The
variastions of the results in the latter part of the period are due solely to the following

"~ considerations:




1. In the exact analysis, supersonic velocities appeared during inflow, but in the
approximate theory velocities above sonic were not admitted.

2. In the numerical example, used for comparison from the exact theory, tapered reeds were
treated, whereas in the approximate theory, for the same example, constant moment of

inertia was assumed for simplicity,
AIR INFLOW ANALYSIS

For the mathematical treatment of the problem some simplifying assumptions had to be

made .

Basic Assuiptions, The following basic assumptions have been used in the analysis:

1. The flow upstream of the valves is assumed to be parallel to the valve center planes;
i.e., a short cowl of large diameter is assumed ahead of the valve bank, which is
built up of a large number of individual valves.

2. The quasi ane-dimensional approach employed takes into account the time and space
variation of area, flow pressure, and flow velocity between the valves.

3. The analysis considers non-steady, compressible, non-viscous flow between a pair of
reed valves with isentropic change of state during inflow.

4. The approximetion is introduced in assuming the reeds frozen at particular times
during the period, at which times the inflow opening is treated as a nozzle., This is
equivalent to neglecting the inertia effects of the fluid,

5. Reeds are of constant thickiess. This assumption is not necessary, but is introdu.ed

for simplification of the numerical computacions.

The above assumptions make it possible to determine the pressure, velocity, and density
distributions between a pair of reed valves during inficv for a given geometric configuration
of the valves and a given or a desired pressure-time function in the combustion chamber.

Analysis. The reeds are considered as cantilever beams of known mess distribution and
elastic properties, The same method is applicable to hinged reeds as well, but for trevity,
this analysis was not carried out in tnis paper. If it is postulated that the pressure dif-
ference at the free ends of the reeds is to be zero at all times in order to minimize vortex
development, then the resultant pressure-force distribution along the reeds may be assumed to
be triangular, as shown in Figure 1. Any other distribution of the resultant pressure force
may be assumed, as well, without modifying the nethod presented here. In order to climinate
vortex formation completely, it would be necessary to assure zero velocity difference, aswell
as zero pressure difference, at the free ends of the reeds. It is not possible at present,
however, to introduce this modification into the analysis since no information on the velocity-
time function of the gases on the combustion chamber side of the reeds is available,
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‘The magnitude of the pressure difference (A,) at the entrance (clamped end, X = 0) is a
time variable, In the non-homogeneous fourth order linear differential equation of the reed
deflections, the pressure difference function (A(x,t)) is the forcing function. This equation
can be solved by standard methods (e.g., Ref.3), once the nature of the forcing function is
prescribed. The solution of the above equation gives the history of the reed motion, and thus
the reed shapes throughout the period are determined. Taking the reed shapes for specified
times, one may treat the inflow as a quasi one-dimensional nozzle flow (e.g., Ref. 4), The
continuity equation, the Bernoulli equation, and the equation of the change of state of the
gas then make it possible to determine the inflow phenomena.

It is possible to postulate either the existence of only sonic and subsonic velocities,
or to include also supersonic velocities during inflow., Although in the exact method of solu-
tion, Refs. 1 and 2, supersonic velocities do appear, it is believed that because of frictional
and other losses, not included in the analysis, no such velocities will occur in actual cases.

For this reeson, only velocities up to sonic cre admitted in the nozzle flow.

Basic Equations and Their Integration. The equation of forced motion of cantilever reeds

2 2
-é,-( gz’,‘)+ma’—“= flE,t) (1)
where EI is the bending stiffness
m is the mass per unit length
£ and n are the space variables along the reeds and perpendicular to them
t is the time variable
f(£,t) is the forcing function.
If m is constant, equation (]) may be written as:

a* a*
EIa—E-? + ma;l = f(£,t) (2)

1f the time variabls load per unit length, the forcing function, is given by:

f(g,t) = r(&) eut @

then equation (2) admits a solution of the form

nlE, L) = glg) ewt (4)
and g(£) must satisfy the equation
d*n
El — + mw?n = r(&) (5)
d&‘




Using the notation

o o W (6)
BT
equation (5) becomes
d*n ) 1
Er*ﬁn'sf r(&) (7)

The solution of the homogeneous equation, corresponding to equation (7), is

3 ' - .
heg) = et [A cos(ge-:)+ B sinkﬁ}-&_) ] ‘e “[c cos\j—é_)+ D sink:—f ) ](8)
g 3 g S\ &

If r(g) is given, see Figure 1, by

rE) = % (1- % ) )
a particular solutino of equation (7) is
k(g =$<1-%) B | (10)
and the general ;omtion of equation (7) is
g(&) = h{Z) + k(E) <1.1)
The boundary co.ndit.iona to be satisfied by g(Z) are:
1. Forg=0 gl& =0 N
2, Forg =0 gé-[ew)ho |
. > (12)
3. Forf =H g?- [g(g)) = 0
4 Forz=H &5 Lete)] ~ 0 )

From conditions (12), the four arbitrary constants of integration, A, B, C and D may be
determined. They are

A = [C + Al] N
B = m - D + Ae
Chze”" cos a[\, sina + A, cos ] + A [1 + e™%] L (13)

1 + %-ﬂa + e-la + 48"20 COS"'a

2 - N[l +e™%)+ 2 sina [\ sina + A, cos a]

D=

1 + %-Ra + e%u + 48“25 WQG J




The equations describing the flow in a nozzle and thus between a pair of reeds at any
time (L) are:
The continuity equation is

Ups = Uy pp Sp (i4)
The Bernoulli equation is
u? + 26 = ud + 24, (15)
The equation of isentropic change of state is
y ,
LA (p—) (16)
Pn Pn
where
u is the tlow velocity
p is the fluid density
p is the fluid pressure
S is the cross sectional srea between a pair of reeds
v is the adiabatic const.nnt

AR
¢=]1— 1s the enthalpy
o yLipo/\Dy)

subscript zero denotes stagnation conditions
subscript n denotes any specified station along the flow.

If the entrance section (% = 0) is denoted by subscript 1 and if the following non-
. dimensional variables are introduced

U= p-2 R-2 s- an
Py 04

mlm

u
u,

two equaticas result for the calculation of the inflow velocities (U) and the inflow pres-
sures (P)




\ -1
__?Y__Pﬁ(&)"u_p’?ﬂu P (18)

Po
2zt

Sy  Po Py |7 bR

U* ™ e (—) 1-97)e1 (19)
4 (y-1) oo \ Ry
The relation betwsen U, and p, is given by

: %t

a._Y_&(J,_(P_t) } (20)
" Y-1 o4 Pa

From measured or desired pressure distribution, the pressure on the combustion chamber
side of the reed valves, qQ, may be givern as a function of time at a selected station, say at
the entrance X = 0. Then a desired pressure variation on the intake side of the reeds p has
to be prescribed at the same station X = ) during the intake time. The choice of p may be
wade from the consideration that, for efficient air intake, A * p - q, the pressure differance
acting on the reeds should be as large as possible during the opening and as small as possible
during the closing time of the valves. The general variation of p and q is drewn in Figure 2.
Thus, with the appropriate choice of p, = p,(t), the pressure P and velocity U functions dur-
ing intake may be determined from equations 18, 19, 20 and the deusity R variation from equa-
tion 16, for the previously determined area «» 1. ‘ions S. The transformation from the £, n
coordinates to the X,y coordinates may be don. - caphically or analytically.

NUMERICAL EXAMPLE

The numerical example presented has been warked cut for a case which has been treated in
the exac” analysis (Ref. 1, Case 1, area ratio 3:1). The geometric coafiguration of the val-
ves and the assumed mass distributions are presented in Figure 3. Figures 4, 5, and 6 give
the reed deflections, the inflow velocity distributions and the inflow pressure distributions
respectively for both the exact and the approximste theories. Figure 7 shows the pressure dis-
tribution on the combustion chamber side of the reeds for the approximate theory.

While comparing the results of the two theories it should Le remembered that the different
mass distributions assumed influence the instantanecus reed shapes at any corresponding time,
as can be seen frow Figure 4, The atiffer valves will bend more towards their free end, while
the weaker valves more towards their clamped end. The fact should also be recalled that
in the exact theory supersonic velocities appeared, but in the approximate theory only velo-
cities up to sonic were admitted.




CONCLUSIONS

Only & qualitative comparison of the approximate and exact theories could be achieved at
this time., The reason for this is that, due to sudden termination of the contract, no time
wes available for comprehensive numerical computations. From the experience gained duringthe
numerical work for both theories the conclusion can be drawn that the approximate theory will
furnish sufficiently accurate determination of the inflow pheaomena and thus it may be uased
for design purposes with confidence.
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